
BeagleY-AI
Release 1.0.20240612-wip

BeagleBoard.org Foundation
Jun 12, 2024

Table of contents

1 Introduction 3
1.1 Detailed overview . 3

1.1.1 AM67A SoC . 4
1.2 Board components location . 5

1.2.1 Front components . 5
1.2.2 Back components . 5

2 BeagleY-AI Quick Start 7
2.1 What’s included in the box? . 7
2.2 Getting started . 7
2.3 Power Supply . 8
2.4 Boot Media (Software image) . 8
2.5 USB Tethering . 9

2.5.1 SSH connection . 9
2.5.2 UART connection . 12
2.5.3 Headless connection . 14
2.5.4 Standalone connection . 14

2.6 Connecting to WiFi . 15
2.6.1 nmtui . 15
2.6.2 iwctl . 18

2.7 Attach fan . 19
2.8 Demos and Tutorials . 19

3 Design and Specifications 21
3.1 Block Diagram and Overview . 21
3.2 Processor . 21
3.3 Boot Modes . 24
3.4 Power . 24
3.5 Clocks and Resets . 24

3.5.1 USB-C Power/Data Port . 24
3.5.2 PMIC . 27
3.5.3 HCPS (High Current Power Stage) . 27
3.5.4 Analog Rail Decoupling . 27
3.5.5 Digital Rail Decoupling . 27
3.5.6 LDOs . 30

3.6 Memory . 30
3.6.1 RAM (LPDDR4) . 30
3.6.2 EEPROM . 34
3.6.3 microSD Card . 34

3.7 General Expansion . 34
3.7.1 40pin Header . 35
3.7.2 I2C . 35
3.7.3 USB . 35
3.7.4 PCI Express . 35
3.7.5 RTC (Real-time Clock) . 41
3.7.6 Fan Header . 41

3.8 Networking . 41

i

3.8.1 WiFi / Bluetooth LE . 41
3.8.2 Ethernet . 44

3.9 Cameras & Displays . 44
3.9.1 HDMI (DPI) . 45
3.9.2 OLDI (LVDS) . 45
3.9.3 DSI . 45
3.9.4 CSI . 45

3.10 Buttons and LEDs . 54
3.11 Debug Ports . 54

3.11.1 JTAG Tag-Connect . 54
3.11.2 UART . 54
3.11.3 PMIC NVM Tag-Connect . 56

3.12 Miscellaneous . 56
3.13 Mechanical Specifications . 58

4 Expansion 61
4.1 PCIe . 61

5 Demos and tutorials 63
5.1 Using GPIO . 63

5.1.1 Pin Numbering . 63
5.1.2 Required Hardware . 63
5.1.3 GPIO Write . 65
5.1.4 Blink an LED . 65
5.1.5 Read a Button . 68
5.1.6 Combining the Two . 69
5.1.7 Understanding Internal Pull Resistors . 70
5.1.8 Troubleshooting . 71
5.1.9 Bonus - Turn all GPIOs ON/OFF . 71
5.1.10 Going Further . 72

5.2 Pulse Width Modulation (PWM) . 72
5.2.1 What is it . 72
5.2.2 How do we do it . 73
5.2.3 Troubleshooting . 74
5.2.4 Going Further . 74

5.3 Using the on-board Real Time Clock (RTC) . 74
5.3.1 Required Hardware . 75
5.3.2 Uses for an RTC . 75
5.3.3 Setting time . 75
5.3.4 Diving Deeper . 76
5.3.5 Troubleshooting . 77
5.3.6 Going Further . 77

5.4 Using PCA9685 Motor Drivers . 78
5.4.1 Operating Principle . 78
5.4.2 Using Adafruit ServoKit . 80
5.4.3 Python User-space Driver . 81
5.4.4 WaveShare Motor and Servo Driver HAT . 81
5.4.5 XICOOLEE Motor and Servo Driver HAT . 82
5.4.6 Adafruit DC & Stepper Motor HAT . 84

5.5 Booting from NVMe Drives . 85
5.5.1 Verified HATs and Drives . 85
5.5.2 Step by step . 85
5.5.3 Troubleshooting . 87

5.6 Using IMX219 CSI Cameras . 87
5.6.1 Using CSI Port 0 . 88
5.6.2 Using CSI Port 1 . 88
5.6.3 Troubleshooting . 88

5.7 Using the Arducam Dual V3Link Camera Kit . 89
5.7.1 Initial Hardware Connection . 90

ii

5.7.2 Verify that the HAT is connected . 90
5.7.3 Switching CSI Channels . 90
5.7.4 Troubleshooting . 90

6 Support 91
6.1 Production board boot media . 91
6.2 Certifications and export control . 91

6.2.1 Export designations . 91
6.2.2 Size and weight . 91

6.3 Additional documentation . 91
6.3.1 Hardware docs . 91
6.3.2 Software docs . 92
6.3.3 Support forum . 92
6.3.4 Pictures . 92

6.4 Change History . 92
6.4.1 Board Changes . 92

iii

iv

BeagleY-AI, Release 1.0.20240612-wip

Work in progress

BeagleY-AI is an open-source single board computer based on the Texas Instruments AM67A Arm-based vision
processor.

Table of contents 1

BeagleY-AI, Release 1.0.20240612-wip

2 Table of contents

Chapter 1

Introduction

BeagleY-AI is an open-source single board computer designed for edge AI applications.

1.1 Detailed overview

BeagleY-AI is based on the Texas Instruments AM67A Arm-based vision processor. It features a quad-core 64-bit
Arm®Cortex®-A53 CPU subsystem at 1.4GHz, Dual general-purpose C7x DSP with Matrix Multiply Accelerator
(MMA) capable of 4 TOPs each, Arm Cortex-R5 subsystem for low-latency I/O and control, a 50 GFlop GPU, video
and vision accelerators, and other specialized processing capability.

3

BeagleY-AI, Release 1.0.20240612-wip

Table 1.1: BeagleY-AI features

Feature Description
Processor Texas Instruments AM67A, Quad 64-bit Arm® Cortex®-A53@1.4 GHz, multiple cores including Arm/GPU processors,

DSP, and vision/deep learning accelerators
RAM 4GB LPDDR4
Wi-Fi Beagleboard BM3301, 802.11ax Wi-Fi
Bluetooth Bluetooth Low Energy 5.4 (BLE)
USB Ports 4 x USB 3.0 TypeA ports supporting simultaneous 5Gbps operation, 1 x USB 2.0 TypeC, supports USB 2.0 device

mode
Ethernet Gigabit Ethernet, with PoE+ support (requires separate PoE HAT)
Cam-
era/Display

2 x 4-lane MIPI camera connector (one connector muxed with DSI capability)

Display Output 1 x HDMI display, 1 x OLDI display, 1 x DSI MIPI Display
Real-time Clock
(RTC)

Supports external coin-cell battery for power failure time retention

Debug UART 1 x 3-pin debug UART
Power 5V/3A DC power via USB-C
Power Button On/Off included
PCIe Interface PCI-Express® Gen3 x 1 interface for fast peripherals (requires separate M.2 HAT or other adapter)
Expansion Con-
nector

40-pin header

Fan connector 1 x 4-pin fan connector, supports PWM control and fan speed measurement
Storage microSD card slot with UHS-1 support
Tag Connect 1 x JTAG, 1 x External PMIC programming port

1.1.1 AM67A SoC

The AM67A scalable processor family is based on the evolutionary Jacinto™ 7 architecture, targeted at Smart
Vision Camera and General Compute applications and built on extensive market knowledge accumulated over
a decade of TI’s leadership in the Vision processor market. The AM67A family is built for a broad set of cost-
sensitive high performance compute applications in Factory Automation, Building Automation, and other mar-
kets.

Some Applications include:

• Human Machine Interface (HMI)

• Hospital patient monitoring

• Industrial PC

• Building security system

• Off-highway vehicle

• Test and measurement

• Energy storage systems

• Video Surveillance

• Machine Vision

• Industrial mobile robot (AGV/AMR)

• Front camera systems

The AM67A provides high performance compute technology for both traditional and deep learning algorithms
at industry leading power/performance ratios with a high level of system integration to enable scalability and
lower costs for advanced vision camera applications. Key cores include the latest Arm and GPU processors for
general compute, next generation DSP with scalar and vector cores, dedicated deep learning and traditional
algorithm accelerators, an integrated next generation imaging subsystem (ISP), video codec, and MCU cores.
All protected by industrial-grade security hardware accelerators.

Tip: For more information about AM67A SoC you can checkout https://www.ti.com/product/AM67A

4 Chapter 1. Introduction

https://www.ti.com/product/AM67A
https://www.ti.com/product/AM67A
https://www.ti.com/product/AM67A
https://www.ti.com/product/AM67A

BeagleY-AI, Release 1.0.20240612-wip

1.2 Board components location

1.2.1 Front components

Table 1.2: BeagleY-AI board front components location

Feature Description
WiFi/BLE Beagleboard BM3301 with 802.11ax Wi-Fi & Bluetooth Low Energy 5.4 (BLE)
RAM 4GB LPDDR4
Expansion 40pin Expansion header compatible with HATs
SoC TI AM67A Arm®Cortex®-A53 4 TOPS vision SoC with RGB-IR ISP for 4 cameras, machine vision, robotics, and

smart HMI
Fan 4pin Fan connector
USB-A 4 x USB 3 TypeA ports supporting simultaneous 5Gbps operation host ports
Network Connectiv-
ity

Gigabit Ethernet

PoE Power over Ethernet HAT connector
Camera/Display 1 x 4-lane MIPI camera/display transceivers, 1 x 4-lane MIPI camera
Debug UART 1 x 3-pin JST-SH 1.0mm debug UART port
Display Output 1 x HDMI display
USB-C 1 x Type-C port for power, and supports USB 2 device
PMIC Power Management Integrated Circuit for 5V/5A DC power via USB-C with Power Delivery support
Bicolor LED Indicator LED
Power button ON/OFF button
PCIe PCI-Express® Gen3 x 1 interface for fast peripherals (requires separate M.2 HAT or other adapter)

1.2.2 Back components

Table 1.3: BeagleY-AI board back components location

Feature Description
Tag-Connect 1 x JTAG & 1 x Tag Connect for PMIC NVM Programming
Display output 1 x OLDI display
Storage microSD card slot with support for high-speed SDR104 mode

1.2. Board components location 5

BeagleY-AI, Release 1.0.20240612-wip

6 Chapter 1. Introduction

Chapter 2

BeagleY-AI Quick Start

2.1 What’s included in the box?

When you purchase a BeagleY-AI, you’ll get the following in the box:

1. BeagleY-AI

2. 2.4GHz antenna

3. Quick-start card

Todo: Attaching antennas instructions for BeagleY-AI

Todo: BeagleY-AI unboxing video

2.2 Getting started

To get started your BeagleY-AI you need the following:

1. 5V @ 3A power supply

2. MicromicroSD card (32GB)

3. Boot Media (Software image)

You may need additional accessories based on the mode of operation, you can use your BeagleY-AI in different
ways.

1. USB Tethering by directly connecting via USB type-c port

2. Headless connection via UART debug port

3. Standalone connection with Monitor and other peripherals attached

Easiest option is to connect the board directly to your PC or Laptop using a USB type-C to type-c cable. There
is only one USB type-C port on board, if you choose to use a dedicated power supply for first time setup, you
may choose to access the board via any other methods listed above.

7

https://www.beagleboard.org/boards/beagley-ai

BeagleY-AI, Release 1.0.20240612-wip

2.3 Power Supply

To power the board you can either connect it to a dedicated power supply like a mobile charger or a wall adapter
that can provide 5V ≥ 3A. Checkout the docs power supply page for power supply recommendations.

Note: Instead of using a power supply or power adapter if you are using a Type-C to Type-C cable to connect
the board to your laptop/PC then make sure it can supply at least 1000mA.

2.4 Boot Media (Software image)

Todo: Update this section to use latest boot media (software image) for BeagleY-AI.

Download the boot media from https://www.beagleboard.org/distros/beagley-ai-xfce-12-5-2024-06-10 and
flash it on a micro microSD card using using Balena Etcher following these steps:

1. Select downloaded boot media

2. Select microSD card

3. Flash!

Tip: For more detailed steps checkout the beagleboard-getting-started under support section of the docu-
mentation.

Fig. 2.1: Flashing BeagleY-AI boot image (software image) to microSD card

8 Chapter 2. BeagleY-AI Quick Start

https://www.beagleboard.org/distros/beagley-ai-xfce-12-5-2024-06-10
https://etcher.balena.io/

BeagleY-AI, Release 1.0.20240612-wip

Once the microSD card is flashed you should see BOOT and rootfs mounted on your system as shown in
image below,

Fig. 2.2: Flashed microSD card mounted partitions

Under BOOT partition open sysconf.txt to edit login username and password.

In sysconf.txt file you have to edit the two lines highlighted below.

29 # user_name - Set a user name for the user (1000)
30 #user_name=beagle ①
31

32 # user_password - Set a password for user (1000)
33 #user_password=FooBar ②

① If boris is your username, update #user_name=beagle to user_name=boris

② If bash is your password, update #user_password=FooBar to user_password=bash

Note: Make sure to remove # from in front of these lines else the lines will still be interpreted like a comment
and your username & password will not be updated.

Once username and password are updated, you can insert the microSD card into your BeagleY-AI as shown in
the image below:

2.5 USB Tethering

Note: If you are using the board with a fan or running a computationally intensive task you should always
power the board with a dedicated power supply that can supply 5V ≥ 3A (15W+).

As per USB standards these are the current at 5V that each downstream USB port type can (max) supply:

• USB Type-A 3.x port - 900mA (4.5W)

• USB Type-C 1.2 port - 1500mA (7.5W) to 3000mA (15W)

Thus it’s recommended to use type-C to type-C cable.

To initially test your board, you can connect the board directly to your computer using atype-C to type-C
cable shown in the image below.

2.5.1 SSH connection

After connecting, you should see the power LED glow, and soon just like with other Beagles, BeagleY-AI will
create a virtual wired connection on your computer. To access the board, open up a terminal (Linux/Mac) or
command prompt (Windows) and use the SSH command as shown below.

2.5. USB Tethering 9

https://www.wikihow.com/Open-a-Terminal-Window-in-Ubuntu
https://www.wikihow.com/Open-a-Terminal-Window-in-Mac
https://www.wikihow.com/Open-the-Command-Prompt-in-Windows

BeagleY-AI, Release 1.0.20240612-wip

Fig. 2.3: sysconf file under BOOT partition

10 Chapter 2. BeagleY-AI Quick Start

BeagleY-AI, Release 1.0.20240612-wip

Fig. 2.4: Insert microSD card in BeagleY-AI

Fig. 2.5: BeagleY-AI tethered connection

2.5. USB Tethering 11

BeagleY-AI, Release 1.0.20240612-wip

ssh debian@192.168.7.2

Tip: If you are not able to find your beagle at 192.168.7.2make sure to checkout start-browse-to-beagle
to resolve your connection issue.

Important: If you have not updated your default username and password during Boot Media (Software
image), you must update the default password at this step to something safer.

Fig. 2.6: BeagleY-AI SSH connection

2.5.2 UART connection

Your BeagleY-AI board creates a UART connection (No additional hardware required) when tethered to a Lap-
top/PC which you can access using Putty of tio. On a linux machine it may come up as dev/ttyACM*,
it will be different for Mac and Windows operatig systems. To find serial port for your system you can checkout
this guide.

• If you are on linux, try tio with default setting using command below,

tio /dev/ttyACM0

With this you have the access to BeagleY-AI terminal. Now, you can connect your board to WiFi, try out all the
cool demos and explore all the other ways to access your BeagleY-AI listed below.

• Connecting to WiFi

• Demos and tutorials

12 Chapter 2. BeagleY-AI Quick Start

https://www.mathworks.com/help/matlab/supportpkg/find-arduino-port-on-windows-mac-and-linux.html;jsessionid=c2d3127cd10411c66f33468cbd5b

BeagleY-AI, Release 1.0.20240612-wip

Fig. 2.7: Putty serial connection

2.5. USB Tethering 13

BeagleY-AI, Release 1.0.20240612-wip

2.5.3 Headless connection

If you want to run your BeagleY-AI in headless mode, you need Raspberry Pi Debug Probe or similar serial
adapter.

Todo: Add images and description for this section.

2.5.4 Standalone connection

To setup your BeagleY-AI for standalone usage, you need the following additional accessories,

1. HDMI monitor

2. micro HDMI to full-size HDMI cable

3. Wireless keyboard & mice combo

4. Ethernet cable (Optional)

Make sure you have the microSD card with boot media (software image) inserted in to the BeagleY-AI. Now
connect,

1. microHDMI to BeagleY-AI and full size HDMI to monitor

2. keyboard and mice combo to one of the four USB port of BeagleY-AI

3. Power supply to USB type-c connector of BeagleY-AI

The connection diagram below provides a clear representation of all the connections,

Fig. 2.8: BeagleY-AI standalone connection

If everything is connected properly you should see four penguins on your monitor.

When prompted, log in using the updated login credentials you updated during the USB tethering step.

14 Chapter 2. BeagleY-AI Quick Start

https://www.raspberrypi.com/documentation/microcontrollers/debug-probe.html

BeagleY-AI, Release 1.0.20240612-wip

Fig. 2.9: BeagleY-AI boot penguins

Important: You can not update login credentials at this step, you must update them during boot media
(software image) micrSD card flashing or USB tethering step!

Once logged in you should see the splash screen shown in the image below:

Test network connection by running ping 8.8.8.8

Explore and build with your new BeagleY-AI board!

2.6 Connecting to WiFi

We have two options to connect to WiFi,

1. nmtui

2. iwctl

2.6.1 nmtui

• Enable NetworkManager

sudo systemctl enable NetworkManager

• Start NetworkManager

sudo systemctl start NetworkManager

• Start nmtui application

sudo nmtui

2.6. Connecting to WiFi 15

BeagleY-AI, Release 1.0.20240612-wip

Fig. 2.10: BeagleY-AI XFCE desktop login

Fig. 2.11: BeagleY-AI XFCE home screen

16 Chapter 2. BeagleY-AI Quick Start

BeagleY-AI, Release 1.0.20240612-wip

Fig. 2.12: BeagleY-AI network ping test

Fig. 2.13: BeagleY-AI running htop

2.6. Connecting to WiFi 17

BeagleY-AI, Release 1.0.20240612-wip

• To navigate, use the arrow keys or press Tab to step forwards and press Shift+Tab to step back
through the options. Press Enter to select an option. The Space bar toggles the status of a check
box.

• You should see a screen as shown below, here you have to press Enter on Acticate a connec-
tion option to activate wired and wireless connection options.

Fig. 2.14: NetworkManager TUI

There under WiFi section press Enter on desired access point and provide password to connect. When
successfully connected press Esc to get out of the nmtui application window.

2.6.2 iwctl

Once board is fully booted and you have access to the shell, follow the commands below to connect to any
WiFi access point,

• To list the wireless devices attached, (you should see wlan0 listed)

iwctl device list

• Scan WiFi using,

iwctl station wlan0 scan

• Get networks using,

iwctl station wlan0 get-networks

• Connect to your wifi network using,

iwctl --passphrase ”<wifi-pass>” station wlan0 connect ”<wifi-name>”

• Check wlan0 status with,

18 Chapter 2. BeagleY-AI Quick Start

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/networking_guide/sec-configuring_ip_networking_with_nmtui

BeagleY-AI, Release 1.0.20240612-wip

iwctl station wlan0 show

• To list the networks with connected WiFi marked you can again use,

iwctl station wlan0 get-networks

• Test connection with ping command,

ping 8.8.8.8

2.7 Attach fan

Todo: add instructions to attach raspberrypi official fan.

2.8 Demos and Tutorials

• Booting from NVMe Drives

2.7. Attach fan 19

BeagleY-AI, Release 1.0.20240612-wip

20 Chapter 2. BeagleY-AI Quick Start

Chapter 3

Design and Specifications

Work in progress

Todo: Add details about all the schematic sections.

If you want to know how BeagleY-AI is designed and the detailed specifications, then this chapter is for you. We
are going to attempt to provide you a short and crisp overview followed by discussing each hardware design
element in detail.

Tip: For board files, 3D model, and more, you can checkout the BeagleY-AI repository on OpenBeagle.

3.1 Block Diagram and Overview

3.2 Processor

The AM67A processor from Texas Instruments is a highly integrated SoC with an Automotive pedigree. It may
be referenced by TI documentation by it’s superset J722s/TDA4AEN.

It’s primary compute cluster revolves around 4xARM Cortex-A53 Cores running at 1.4Ghz.

An MCU subsystem consisting of an ARM Cortex-R5F running at up to 800Mhz is also available for user appli-
cations and is especially useful for real-time IO applications.

For very advanced users, two additional R5 cores are also present, but they are normally reserved for Device
and Run-time Management of the SoC typically.

2x C7x DSPs with MMA support are intended for use as Deep Learning Accelerators for things like AI Vision,
with up to 2TOPS each.

An Imagination BXS-4-64 GPU rounds out the compute cluster, with a dedicated video encoder/decoder avail-
able for multimedia tasks.

The SoC features advanced high speed connectivity, including USB3.1, PCIe and more.

Secure Boot is also available with the ability burn One-Time-Programmable (OTP) eFUSES by energizing the
VPP test pads.

21

https://openbeagle.org/beagley-ai/beagley-ai

BeagleY-AI, Release 1.0.20240612-wip

Fig. 3.1: BeagleY-AI block diagram

22 Chapter 3. Design and Specifications

BeagleY-AI, Release 1.0.20240612-wip

Fig. 3.2: AM67A block diagram

3.2. Processor 23

BeagleY-AI, Release 1.0.20240612-wip

Fig. 3.3: BeagleY-AI boot modes

3.3 Boot Modes

The default boot mode for BeagleY-AI is the SD Card Interface. If no SD card is present, the BootROM on the
AM67A SoC is going to try booting from Ethernet.

It is also possible to load U-Boot from the SD card and then load your main file system from another source,
such as Booting from NVMe Drives.

3.4 Power

BeagleY-AI’s power architecture is split between the TPS65219 PMIC which handles the main logic rails and a
dedicated TPS62872 high current buck regulator for the SoC core rail which defaults to 0.85V on boot.

Both PMIC and VDD_CORE regulators are highly configurable but will boot the board to “sane” defaults out of
box. For advanced users, it is possible to adjust both the VDD_CORE rail as well as IO rails (voltages, timings,
behavior, etc.) for applications such as low power modes where you may want to trade clock speeds for power
efficiency by running the SoC Core at 0.75V for example. Be careful, as changes here could result in unexpected
behavior, the board not booting or even hardware damage, so tread carefully.

Note: At the time of writing, dynamic voltage switching is not supported by the AM67A SoC.

3.5 Clocks and Resets

BeagleY’s main clock source is a 25Mhz Crystal Oscillator connected to MCU_OSC0 pins.

A 32.768Khz “Slow Clock” Crystal is used on the WKUP_LFOSC0 domain.

3.5.1 USB-C Power/Data Port

The board is primarily intended to be powered via USB-C. PD Power negotiation is not done dynamically but
rather by tying the CC lines to GND via 5.1KΩ resistors to indicate to the PD Source that the device requires 5V
3A. Using USB-PD power supplies rated for higher wattages is safe as they will always negotiate to the 5V 3A
requested by the board.

24 Chapter 3. Design and Specifications

BeagleY-AI, Release 1.0.20240612-wip

Fig. 3.4: BeagleY-AI power distribution network

Fig. 3.5: BeagleY-AI SoC Reset, Cntrls, and Clk

3.5. Clocks and Resets 25

BeagleY-AI, Release 1.0.20240612-wip

Fig. 3.6: BeagleY-AI wkup reset cntrls osc

Fig. 3.7: BeagleY-AI USB-C

26 Chapter 3. Design and Specifications

BeagleY-AI, Release 1.0.20240612-wip

The USB-C port is configured by default to also show up as a USB2.0 Device which exposes a serial console,
ethernet gadget (for connection sharing) as well as MTP (Flash Drive) so that only one cable is required to use
the board. A Type-C to Type-C cable and avoiding un-powered USB hubs is recommended due to the board’s
power consumption requirements. Inadequate behavior may result in brownouts/resets or other unexpected
behavior.

3.5.2 PMIC

Fig. 3.8: BeagleY-AI PMIC

3.5.3 HCPS (High Current Power Stage)

Fig. 3.9: BeagleY-AI VDD core High Current Power Stage (HCPS)

3.5.4 Analog Rail Decoupling

3.5.5 Digital Rail Decoupling

Note: Other power sections are nested within their specific interface section.

3.5. Clocks and Resets 27

BeagleY-AI, Release 1.0.20240612-wip

Fig. 3.10: BeagleY-AI SoC analog power rail decoupling capacitors

Fig. 3.11: BeagleY-AI AI SoC IO and DDR decoupling capacitors

28 Chapter 3. Design and Specifications

BeagleY-AI, Release 1.0.20240612-wip

Fig. 3.12: BeagleY-AI SoC VDD & VDDR_CORE decoupling capacitors

3.5. Clocks and Resets 29

BeagleY-AI, Release 1.0.20240612-wip

3.5.6 LDOs

Fig. 3.13: BeagleY-AI VSYS 3V3

While the 3.3V VDD_IO rail is provided by the PMIC, the actual “high current” VSYS 3.3V rail used on the
expansion header and elsewhere in the system is provided by a discrete TPS62A06DRLR regulator.

Fig. 3.14: BeagleY-AI ethernet power 3V3 to 2V5

The 2V5 Rail used by the Ethernet PHY is generated a discrete TPS74801 regulator. This regulator is fed by the
3V3 VSYS regulator.

The 1V1 Rail used by the PHY and USB 3.1 Hub is generated a discrete TPS74801 regulator. By default, this
regulator is fed by the 3V3 VSYS regulator previously discussed.

3.6 Memory

3.6.1 RAM (LPDDR4)

BeagleY-AI has 4GB of Kingston x32 LPDDR4 Memory.

Todo: Add Final DDR Part Number

30 Chapter 3. Design and Specifications

BeagleY-AI, Release 1.0.20240612-wip

Fig. 3.15: BeagleY-AI 3V3/V5 to 1V1 LDO

Fig. 3.16: BeagleY-AI DDR

3.6. Memory 31

BeagleY-AI, Release 1.0.20240612-wip

Fig. 3.17: BeagleY-AI SoC DDR0 connections

32 Chapter 3. Design and Specifications

BeagleY-AI, Release 1.0.20240612-wip

Fig. 3.18: BeagleY-AI DDR caps

Fig. 3.19: BeagleY-AI DDR power

3.6. Memory 33

BeagleY-AI, Release 1.0.20240612-wip

Fig. 3.20: BeagleY-AI board id eeprom

3.6.2 EEPROM

BeagleY-AI features an on-board FT24C32A 32Kbit I2C EEPROM for storing things like board information, man-
ufacture date, etc.

Todo: Add details about specific EEPROM contents and formatting.

3.6.3 microSD Card

Fig. 3.21: BeagleY-AI microSD card interface

The microSD card is the primary boot interface for BeagleY-AI, it corresponds to the MMC1 interface on the
AM67A SoC.

To enable UHS-1 SD card functionality (and speeds!), a load switch is provided which allows the SoC MMC1 PHY
to switch the SD Card IO voltage to 1.8V.

Todo: Explain UHS-1 in more detail and add link to TRM for boot modes and resistor swap options for advanced
users.

3.7 General Expansion

34 Chapter 3. Design and Specifications

BeagleY-AI, Release 1.0.20240612-wip

3.7.1 40pin Header

Fig. 3.22: BeagleY-AI user expansion connector

BeagleY-AI features a 40-pin GPIO Header which aims to enable compatibility with a lot of existing Raspberry
Pi HAT add-on boards. See pinout.beagleboard.io for a more comprehensive view of the 40 pin GPIO header,
available pin functions and tested accessories!

Todo: Add link to docs on building expansion accessories.

3.7.2 I2C

By default, 5 different I2C interfaces are exposed, all of which feature external 2.2KΩ pull-up resistors. 3 of the
interfaces are used by the CSI, DSI and OLDI ports for Cameras & Displays. The remaining 2 ports are exposed
on the 40pin GPIO expansion connector.

The MCU_I2C0 interface is intended as the primary external I2C interface for BeagleY-AI and matches physical
pins 3 and 5 of the header. Most HATs will use these pins.

While WKUP_I2C0 is also exposed on the 40pin Header (physical pins 27 & 28), that bus is shared with several
on-board devices, namely the PMIC, VDD_CORE regulator, Board ID EEPROM and RTC. As such, it is highly
advisable to leave these pins unused unless you are sure you know what you are doing. These pins are normally
only pinned out as a “HAT EEPROM detect” for RPi HATs that provide such functionality (of which there are very
few)

See pinout.beagleboard.io/pinout/i2c for a more visual explanation.

3.7.3 USB

BeagleY-AI features a USB3.1 HUB that provides 4 total USB3.1 Ports from a single USB3.1 Gen-1 (5 Gbps)
SERDES0 lane.

BeagleY-AI features a dedicated USB current limiter that will prevent the Type-A ports from drawing power in
excess of 2.8A.

3.7.4 PCI Express

BeagleY-AI features an RPi 5 compatible PCIe connector rated for PCIe Gen2 x1 (5GT/s) connected to SERDES1
on AM67A.

3.7. General Expansion 35

https://pinout.beagleboard.io/
https://pinout.beagleboard.io/pinout/i2c

BeagleY-AI, Release 1.0.20240612-wip

Fig. 3.23: BeagleY-AI I2C tree

36 Chapter 3. Design and Specifications

BeagleY-AI, Release 1.0.20240612-wip

Fig. 3.24: BeagleY-AI voltage level translator

Fig. 3.25: BeagleY-AI USB3 hub

3.7. General Expansion 37

BeagleY-AI, Release 1.0.20240612-wip

Fig. 3.26: BeagleY-AI USB hub config

Fig. 3.27: BeagleY-AI SoC SERDES0

Fig. 3.28: BeagleY-AI SoC USB0 and USB1

38 Chapter 3. Design and Specifications

BeagleY-AI, Release 1.0.20240612-wip

Fig. 3.29: BeagleY-AI USB-A Connector 1

Fig. 3.30: BeagleY-AI USB-A Connector 2

3.7. General Expansion 39

BeagleY-AI, Release 1.0.20240612-wip

Fig. 3.31: BeagleY-AI dual USB current limiter

Fig. 3.32: BeagleY-AI USB VBUS resistor divider circuit

40 Chapter 3. Design and Specifications

BeagleY-AI, Release 1.0.20240612-wip

Fig. 3.33: BeagleY-AI PCIE connector

Note: Just like the Raspberry Pi 5, while the AM67A SoC is capable of PCIe Gen3 (8GT/s), the choice of
cable/connector means that some devices may not be able to run at full Gen 3 speeds and will need to be
limited to Gen 2 for stable operation.

Fig. 3.34: BeagleY-AI SoC SERDES1

3.7.5 RTC (Real-time Clock)

BeagleY-AI has an on-board I2C RTC that can be powered by an external RTC for accurate time-keeping even
when the board is powered off. For more information, see the corresponding docs page - Using the on-board
Real Time Clock (RTC)

3.7.6 Fan Header

BeagleY-AI features a Raspberry Pi 5 compatible Fan connector. The fan is software PWM controller in Linux by
default to maintain a balance between cooling and noise depending on SoC temperature.

3.8 Networking

3.8.1 WiFi / Bluetooth LE

BeagleY-AI features a Beagle BM3301 Wireless module based on the Texas Instruments CC3301 which features
2.4Ghz WiFi6 (802.11AX) and BLE 5.4

3.8. Networking 41

BeagleY-AI, Release 1.0.20240612-wip

Fig. 3.35: BeagleY-AI I2C ext RTC

Fig. 3.36: BeagleY-AI fan connector

42 Chapter 3. Design and Specifications

BeagleY-AI, Release 1.0.20240612-wip

Fig. 3.37: BeagleY-AI WiFi module

3.8. Networking 43

BeagleY-AI, Release 1.0.20240612-wip

Fig. 3.38: BeagleY-AI SoC MMC0, MMC1, and MMC2

Note: 5Ghz WiFi Bands and Bluetooth Classic are not supported by the CC3301.

3.8.2 Ethernet

BeagleY-AI is equipped with a 1 Gb (10/100/1000) DP83867 Ethernet PHY connected over RGMII.

BeagleY-AI uses an RJ45 ethernet connector with integrated magnetics.

Optional PoE (Power over Ethernet) can also be used with compatible 3rd party HATs designed for the Raspberry
Pi 5.

Note: Only Pi 5 PoE HATs are compatible, as Pi 4 and previous designs have the PoE pins in a different location.

3.9 Cameras & Displays

BeagleY-AI is capable of driving up to 3 Displays (HDMI, OLDI/LVDS & DSI) simultaneously.

• HDMI via DPI Converter up to 1920 x 1080 @60FPS

• OLDI/LVDS up to 3840 x 1080 @60FPS (Dual Link, 150-Mhz Pixel Clock)

• DSI up to 3840 x 1080 at 60fps (4 Lane MIPI® D-PHY, 300-MHz Pixel Clock)

It also features 2 CSI interfaces and can support up to 8 Cameras using Virtual Channels and V3Link.

44 Chapter 3. Design and Specifications

BeagleY-AI, Release 1.0.20240612-wip

Fig. 3.39: BeagleY-AI ethernet DP83867

Note: The CSI1/DSI0 22-pin port is muxed between the two interfaces like the RPi 5, meaning that you must
chose if it’s used as a Display or Camera port. The CSI0 22-pin connector can only be used as a Camera port.

3.9.1 HDMI (DPI)

BeagleY-AI has a single HDMI 1.4 port capable of up to 1080p @60FPS with Audio. This is achieved using an
external Parallel RGB (DPI) to HDMI converter from ITE.

Because the DPI interface is used up by the HDMI converter, it does mean that DPI is not available on the 40Pin
GPIO header.

3.9.2 OLDI (LVDS)

The OLDI connector on BeagleY-AI has the same pinout as the one used by Beagle Play, meaning the same
displays are compatible.

3.9.3 DSI

The DSI0 port is shared withe CSI1 and selectable via a MUX switch to maintain Pi functionality. It features
the same pinout found on the 22-pin DSI connector on RPi5 and BeagleBone AI-64 and enables connectivity to
existing supported DSI displays.

Please note that DSI is only available on the second of the two 22-pin “CSI” connectors.

3.9.4 CSI

To maintain a Pi compatible form factor, BeagleY-AI only exposes 2 of the 4 physical CSI interfaces of the AM67A
SoC. Each CSI interfaces is MIPI® CSI-2 v1.3 +MIPI®D-PHY 1.2 with 4 Data Lanes running at up to 2.5Gbps/lane.
The interface also supports up to 16 Virtual Channels for multi-camera applications using FPDLink or V3Link.

3.9. Cameras & Displays 45

BeagleY-AI, Release 1.0.20240612-wip

Fig. 3.40: BeagleY-AI ethernet connector

46 Chapter 3. Design and Specifications

BeagleY-AI, Release 1.0.20240612-wip

Fig. 3.41: BeagleY-AI SoC RGMII

Fig. 3.42: BeagleY-AI SoC RGMII1 RST

Fig. 3.43: BeagleY-AI Ethernet PHY caps

3.9. Cameras & Displays 47

BeagleY-AI, Release 1.0.20240612-wip

Fig. 3.44: BeagleY-AI Ethernet PHY misc

Fig. 3.45: BeagleY-AI Ethernet PHY protection

Fig. 3.46: BeagleY-AI PoE header

48 Chapter 3. Design and Specifications

BeagleY-AI, Release 1.0.20240612-wip

Fig. 3.47: BeagleY-AI RGB888 to HDMI

Fig. 3.48: BeagleY-AI SoC VOUT

3.9. Cameras & Displays 49

BeagleY-AI, Release 1.0.20240612-wip

Fig. 3.49: BeagleY-AI HDMI addr protection

Fig. 3.50: BeagleY-AI HDMI power

Fig. 3.51: BeagleY-AI HDMI reset

50 Chapter 3. Design and Specifications

BeagleY-AI, Release 1.0.20240612-wip

Fig. 3.52: BeagleY-AI SoC OLDI

Fig. 3.53: BeagleY-AI SoC DSI0 TX connections

3.9. Cameras & Displays 51

BeagleY-AI, Release 1.0.20240612-wip

Fig. 3.54: BeagleY-AI RPI DSI/CSI

Fig. 3.55: BeagleY-AI RPI CSI

52 Chapter 3. Design and Specifications

BeagleY-AI, Release 1.0.20240612-wip

Fig. 3.56: BeagleY-AI SoC CSI1, CSI2, and CSI3

3.9. Cameras & Displays 53

BeagleY-AI, Release 1.0.20240612-wip

3.10 Buttons and LEDs

Fig. 3.57: BeagleY-AI LEDs

BeagleY-AI features a single dual-color (Red/Green) LED for Power/Status indication.

3.11 Debug Ports

3.11.1 JTAG Tag-Connect

JTAG is available on the BeagleY-AI via a 10pin Tag-Connect header located on the bottom of the board between
the USB 3.0 ports.

Because of the density of the board and tight fit of the USB connectors, the standard retention clip provided
by Tag-Connect will not fit. A recommended 3D printable adapter is available on Printables

3.11.2 UART

By default, BeagleY-AI exposes the UART port used by UBoot & Linux on a Pi Debugger compatible JST 3pin
header. The UART port used for debug can also be changed in software to use a UART available on the 40Pin
GPIO header.

54 Chapter 3. Design and Specifications

https://www.printables.com/model/879533-beagley-ai-tagconnect-clip-10pin

BeagleY-AI, Release 1.0.20240612-wip

Fig. 3.58: BeagleY-AI Tag-Connect

Fig. 3.59: BeagleY-AI debug UART port

3.11. Debug Ports 55

BeagleY-AI, Release 1.0.20240612-wip

3.11.3 PMIC NVM Tag-Connect

Fig. 3.60: BeagleY-AI PMIC NVM programming interface

A PMIC programming header is present on the BeagleY-AI in the form of a 10pin Tag-Connect header located
on the bottom of the board between the Ethernet and USB 3.0 ports. Ensure you do not connect JTAG to this
port as the pinout and interface is different. PMIC NVM programming should not be performed unless you know
what you’re doing. The port is mainly intended for use during manufacturing.

3.12 Miscellaneous

Fig. 3.61: BeagleY-AI general IO

56 Chapter 3. Design and Specifications

BeagleY-AI, Release 1.0.20240612-wip

Fig. 3.62: BeagleY-AI MCU general IO

Fig. 3.63: BeagleY-AI SoC OSPI0

3.12. Miscellaneous 57

BeagleY-AI, Release 1.0.20240612-wip

Fig. 3.64: BeagleY-AI SoC eFUSE, VMON, Debug, and RSVD

3.13 Mechanical Specifications

Table 3.1: Dimensions & weight

Parameter Value
Size 85 x 56 x 20 mm
Max heigh 20mm
PCB Size 85 x 56 mm
PCB Layers 14 layers
PCB Thickness 1.6mm
RoHS compliant Yes
Gross Weight 110 g
Net Weight 50 g

58 Chapter 3. Design and Specifications

BeagleY-AI, Release 1.0.20240612-wip

Fig. 3.65: BeagleY-AI SoC GPMC0

Fig. 3.66: BeagleY-AI SoC supply noise kelvin sensing

3.13. Mechanical Specifications 59

BeagleY-AI, Release 1.0.20240612-wip

Fig. 3.67: BeagleY-AI SoC ground connections
60 Chapter 3. Design and Specifications

Chapter 4

Expansion

Todo: Describe how to build expansion hardware for BeagleY-AI

4.1 PCIe

For software reference, you can see how PCIe is used on NVMe HATs.

• Booting from NVMe Drives

• Using IMX219 CSI Cameras

• Using the on-board Real Time Clock (RTC)

61

BeagleY-AI, Release 1.0.20240612-wip

62 Chapter 4. Expansion

Chapter 5

Demos and tutorials

5.1 Using GPIO

Work in progress

Todo: Add information about software image used for this demo.

GPIO stands forGeneral-Purpose Input/Output. It’s a set of programmable pins that you can use to connect
and control various electronic components.

You can set each pin to either read signals (input) from things like buttons and sensors or send signals
(output) to things like LEDs and motors. This lets you interact with and control the physical world using code!

A great resource for understanding pin numbering can be found at pinout.beagley.ai

Warning: BeagleY-AI GPIOs are 3.3V tolerant, using higher voltagesWILL DAMAGE the processor!

5.1.1 Pin Numbering

You will see pins referenced in several ways. While this is confusing at first, in reality, we can pick our favorite
way and stick to it.

The two main ways of referring to GPIOs is by their number, so GPIO 2, 3, 4 etc. as seen in the diagram below.
This corresponds to the SoC naming convention. For broad compatibility, BeagleY-AI re-uses the BroadcomGPIO
numbering scheme used by RaspberryPi.

The second (and arguably easier) way we will use for this tutorial is to use the actual pin header number
(shown in dark grey)

So, for the rest of the tutorial, if we refer to hat-08-gpio we mean the 8th pin of the GPIO header. Which,
if you referenced the image below, can see refers to GPIO 14 (UART TX)

If you are curious about the “real” GPIO numbers on the Texas Instruments AM67A SoC, you can look at the
board schematics.

5.1.2 Required Hardware

For the simple blink demo, all that is needed is an LED, a Resistor (we use 2.2K here) and 2 wires.

Similarly, a button is used for the GPIO read example, but you can also just connect that pin to 3.3V or GND
with a wire to simulate a button press.

63

https://pinout.beagley.ai/

BeagleY-AI, Release 1.0.20240612-wip

Fig. 5.1: BeagleY-AI pinout

64 Chapter 5. Demos and tutorials

BeagleY-AI, Release 1.0.20240612-wip

Todo: Add fritzing diagram and chapter on Pin Binding here

5.1.3 GPIO Write

Before using any pin with HAT Pin number we need to configure it using command below,

sudo beagle-pin-mux --pin hat-08 --mode gpio

Fig. 5.2: LED connected to HAT Pin8

At it’s most basic, we can set a GPIO using the gpioset command.

• To set HAT Pin 8 to ON:

gpioset hat-08-gpio 0=1

• To set HAT Pin 8 to OFF:

gpioset hat-08-gpio 0=0

5.1.4 Blink an LED

Let’s create a script called blinky.sh,

• Create the file,

touch blinky.sh

• Open the file using nano editor,

nano blinky.sh

• Copy paste the code below to blinky.sh file,

5.1. Using GPIO 65

BeagleY-AI, Release 1.0.20240612-wip

Fig. 5.3: GPIO ON state

Fig. 5.4: GPIO OFF state

66 Chapter 5. Demos and tutorials

BeagleY-AI, Release 1.0.20240612-wip

#!/bin/bash

while :
do

gpioset hat-08-gpio 0=1
sleep 1
gpioset hat-08-gpio 0=0
sleep 1

done

• Close the editor by pressing Ctrl + O followed by Enter to save the file and then press to Ctrl
+ X exit

• Now execute the blinky.sh script by typing:

bash blinky.sh

Fig. 5.5: LED blinking

• You can exit the blinky.sh progrm by pressing CTRL + C on your keyboard.

Understanding the code

#!/bin/bash

while :
do

gpioset hat-08-gpio 0=1 ①
sleep 1 ②
gpioset hat-08-gpio 0=0 ③
sleep 1 ④

done

The script is an infinite while loop in which we do the following:

① set the HAT Pin 8 as 1 (HIGH)

5.1. Using GPIO 67

BeagleY-AI, Release 1.0.20240612-wip

② Wait 1 Second

③ set the HAT Pin 8 as 0 (LOW)

④ Wait 1 Second

5.1.5 Read a Button

A push button simply completes an electric circuit when pressed. Depending on wiring, it can drive a signal
either “Low” (GND) or “High” (3.3V).

We will connect our Button between HAT Pin 12 (GPIO18) and Ground (GND).

Fig. 5.6: Button connected to HAT Pin12

• Configure pin12 as gpio using command below,

sudo beagle-pin-mux --pin hat-12 --mode gpio-pu

The cool part is since we have an internal pull-up resistor, we don’t need an external one! The pull resistor
guarantees that the Pin stays in a known (HIGH) state unless the button is pressed, in which case it will go LOW.

• Reading GPIOs can be done using the gpioget command

gpioget hat-12-gpio-pu 0

Results in 1 if the Input is held HIGH or 0 if the Input is held LOW

Let’s create a script called button.sh to continuously read an input pin connected to a button and print out
when it’s pressed!

• Create the file,

touch button.sh

• Open the file using nano editor,

nano button.sh

• Copy paste the code below to button.sh file,

68 Chapter 5. Demos and tutorials

BeagleY-AI, Release 1.0.20240612-wip

#!/bin/bash

while :
do

if (($(gpioget hat-12-gpio-pu 0) == 0))
then

echo ”Button Pressed!”
fi

done

• Close the editor by pressing Ctrl + O followed by Enter to save the file and then press to Ctrl
+ X exit

• Now execute the button.sh script by typing:

bash button.sh

• You can exit the button.sh by pressing Ctrl + C on your keyboard.

5.1.6 Combining the Two

Fig. 5.7: Button connected to HAT Pin12 & LED connected to HAT Pin8

Now, logically, let’s make an LED match the state of the button.

Let’s create a script called blinkyButton.sh:

• Create the file,

touch blinkyButton.sh

• Open the file using nano editor,

nano blinkyButton.sh

• Copy paste the code below to blinkyButton.sh file,

5.1. Using GPIO 69

BeagleY-AI, Release 1.0.20240612-wip

#!/bin/bash

while :
do

if (($(gpioget hat-12-gpio-pu 0) == 0))
then

gpioset hat-08-gpio 0=1
else

gpioset hat-08-gpio 0=0
fi

done

• Close the editor by pressing Ctrl + O followed by Enter to save the file and then press to Ctrl
+ X exit

• Now execute the blinkyButton.sh script by typing:

bash blinkyButton.sh

This means when we see HAT Pin 12 go LOW, we know the button is pressed, so we set HAT Pin 8 (our LED) to
ON, otherwise, we turn it OFF.

Fig. 5.8: LED is ON when button is pressed

• You can exit the blinkyButton.sh program by pressing Ctrl + C on your keyboard.

5.1.7 Understanding Internal Pull Resistors

Pull-up and pull-down resistors are used in digital circuits to ensure that inputs to logic settle at expected levels.

• Internal pull-up resistors connects the pin to a high voltage level (e.g., 3.3V) to ensure
the pin input reads as a logic high (1) when no active device is pulling it low.

• Internal pull-down resistors connects the pin to ground (GND) to ensure the input reads
as a logic low (0) when no active device is pulling it high.

These resistors prevent floating inputs and undefined states.

70 Chapter 5. Demos and tutorials

BeagleY-AI, Release 1.0.20240612-wip

By default, all GPIOs on the HAT Header are configured as Inputs with Pull-up Resistors Enabled.

This is important for something like a button, as without it, once a button is released, it goes in an “undefined”
state!

To configure Pull-ups on a per-pin basis, we can use pass the following arguments within gpioget or gpioset:

-B, --bias=[as-is|disable|pull-down|pull-up] (defaults to 'as-is')

The “Bias” argument has the following options:

• as-is - This leaves the bias as-is… quite self explanatory

• disable - This state is also known as High-Z (high impedance) where the Pin is left Floating without
any bias resistor

• pull-down - In this state, the pin is pulled DOWN by the internal 50KΩ resistor

• pull-up - In this state, the pin is pulled UP by the internal 50KΩ resistor

For example, a command to read an input with the Bias intentionally disabled would look like this:

gpioget --bias=disable hat-08-gpio 0

Pull resistors are a foundational block of digital circuits and understanding when to (and not to) use them is
important.

This article from SparkFun Electronics is a good basic primer - Link

5.1.8 Troubleshooting

• My script won’t run!

Make sure you gave the script execute permissions first and that you’re executing it with a ./ before

• To make it executable:

chmod +X scriptName.sh

• To run it:

./scriptName.sh

5.1.9 Bonus - Turn all GPIOs ON/OFF

• Copy and paste this with the button on the right to turn all pins ON.

gpioset hat-03-gpio 0=1 ;\ gpioset hat-05-gpio 0=1 ;\ gpioset hat-08-gpio␣
↪→0=1 ;\ gpioset hat-10-gpio 0=1 ;\ gpioset hat-11-gpio 0=1 ;\ gpioset hat-12-
↪→gpio 0=1 ;\ gpioset hat-13-gpio 0=1 ;\ gpioset hat-15-gpio 0=1 ;\ gpioset␣
↪→hat-16-gpio 0=1 ;\ gpioset hat-18-gpio 0=1 ;\ gpioset hat-19-gpio 0=1 ;\␣
↪→gpioset hat-21-gpio 0=1 ;\ gpioset hat-22-gpio 0=1 ;\ gpioset hat-23-gpio␣
↪→0=1 ;\ gpioset hat-24-gpio 0=1 ;\ gpioset hat-26-gpio 0=1 ;\ gpioset hat-29-
↪→gpio 0=1 ;\ gpioset hat-31-gpio 0=1 ;\ gpioset hat-32-gpio 0=1 ;\ gpioset␣
↪→hat-33-gpio 0=1 ;\ gpioset hat-35-gpio 0=1 ;\ gpioset hat-36-gpio 0=1 ;\␣
↪→gpioset hat-37-gpio 0=1 ;\ gpioset hat-40-gpio 0=1

• Similarly, copy and paste this to turn all pins OFF.

gpioset hat-03-gpio 0=0 ;\ gpioset hat-05-gpio 0=0 ;\ gpioset hat-08-gpio␣
↪→0=0 ;\ gpioset hat-10-gpio 0=0 ;\ gpioset hat-11-gpio 0=0 ;\ gpioset hat-12-
↪→gpio 0=0 ;\ gpioset hat-13-gpio 0=0 ;\ gpioset hat-15-gpio 0=0 ;\ gpioset␣
↪→hat-16-gpio 0=0 ;\ gpioset hat-18-gpio 0=0 ;\ gpioset hat-19-gpio 0=0 ;\␣

(continues on next page)

5.1. Using GPIO 71

https://learn.sparkfun.com/tutorials/pull-up-resistors/all

BeagleY-AI, Release 1.0.20240612-wip

Fig. 5.9: All HAT GPIO toggle

(continued from previous page)

↪→gpioset hat-21-gpio 0=0 ;\ gpioset hat-22-gpio 0=0 ;\ gpioset hat-23-gpio␣
↪→0=0 ;\ gpioset hat-24-gpio 0=0 ;\ gpioset hat-26-gpio 0=0 ;\ gpioset hat-29-
↪→gpio 0=0 ;\ gpioset hat-31-gpio 0=0 ;\ gpioset hat-32-gpio 0=0 ;\ gpioset␣
↪→hat-33-gpio 0=0 ;\ gpioset hat-35-gpio 0=0 ;\ gpioset hat-36-gpio 0=0 ;\␣
↪→gpioset hat-37-gpio 0=0 ;\ gpioset hat-40-gpio 0=0

5.1.10 Going Further

• pinout.beagley.ai

• GPIOSet Documentation

• GPIOGet Documentation

5.2 Pulse Width Modulation (PWM)

Work in progress

Todo: Add further testing steps, results, and images..

5.2.1 What is it

PWM or Pulse Width Modulation, is a technique used to control the amount of power delivered to an
electronic device by breaking up the power signal into discrete ON and OFF periods. The amount of time the
signal spends ON during each cycle determines the output power level (brightness of the LED).

72 Chapter 5. Demos and tutorials

https://pinout.beagley.ai/
https://manpages.debian.org/testing/gpiod/gpioset.1.en.html
https://manpages.debian.org/testing/gpiod/gpioget.1.en.html

BeagleY-AI, Release 1.0.20240612-wip

5.2.2 How do we do it

To configure HAT pin8 as PWM pin using beagle-pin-mux execute the command below,

sudo beagle-pin-mux --pin hat-08 --mode pwm

Let’s create a script called fade.sh that cycles through LED brightness on HAT pin8 by changing PWM duty
cycle.

touch fade.sh

Now open the file with nano editor,

nano fade.sh

In the editor copy paste the script content below,

#!/bin/bash

PWMPIN=”/sys/devices/platform/bus@f0000/23000000.pwm/pwm/pwmchip3/pwm1”

echo 1000 > $PWMPIN/period
echo 0 > $PWMPIN/duty_cycle
echo 0 > $PWMPIN/enable
sleep 1

for i in {1..500};
do

echo $i > $PWMPIN/duty_cycle
echo 1 > $PWMPIN/enable
echo $i
sleep 0.0005

done

for i in {500..1};
do

echo $i > $PWMPIN/duty_cycle
echo 1 > $PWMPIN/enable
echo $i
sleep 0.0005

done

• Close the editor by pressing Ctrl + O followed by Enter to save the file and then press to Ctrl
+ X exit

• Now execute the fade.sh script by typing:

5.2. Pulse Width Modulation (PWM) 73

BeagleY-AI, Release 1.0.20240612-wip

bash fade.sh

Fig. 5.10: LED PWM fade demo

• You can exit the fade.sh program by pressing Ctrl + C on your keyboard.

Todo: Add section about driving Servo Motors at 50KHz

5.2.3 Troubleshooting

Todo: Fill out empty section

5.2.4 Going Further

Todo: Fill out empty section

5.3 Using the on-board Real Time Clock (RTC)

Real Time Clocks (RTCs) provide precise and reliable timekeeping capabilities, which are beneficial for applica-
tions ranging from simple timekeeping to complex scheduling and secure operations.

Without an RTC, a computer must rely on something called Network Time Protocol (NTP) to obtain the current
time from a network source. There are many cases however where an SBC such as BeagleY-AI may not have
a constant or reliable network connection. In situations such as these, an RTC allows the board to keep time
even if the network connection is severed or the board loses power for an extended period of time.

74 Chapter 5. Demos and tutorials

BeagleY-AI, Release 1.0.20240612-wip

Fortunately, BeagleY-AI comes with a built-in DS1340 RTC for all your fancy time keeping needs!

5.3.1 Required Hardware

BeagleY provides a 1.00 mm pitch, 2-pin JST SH connector for a coin cell battery to enable the RTC to keep
time even if power is lost to the board.

These batteries are available from several vendors:

• Raspberry Pi 5 RTC Battery via Adafruit

• Raspberry Pi 5 RTC Battery via DigiKey

• CR2023 battery holder for Pi 5 via Amazon

Fig. 5.11: BeagleY-AI RTC battery connection

5.3.2 Uses for an RTC

1. Maintaining Accurate Time: RTCs provide an accurate clock that continues to run even when the SBC
is powered down. This is crucial for maintaining the correct time and date across reboots.

2. Timestamping: Many applications need to know the current time for timestamping data, logs, or events.
For example, IoT devices may need to log sensor data with precise timestamps.

3. Scheduling Tasks: In some applications, tasks need to be scheduled at specific times. An RTC allows
the SBC to keep track of time accurately, ensuring that tasks are performed at the correct times.

4. Network Synchronization: If the SBC is part of a larger network, having an accurate time helps with
synchronizing data and events across the network.

5. Standby Power Efficiency: Many RTCs operate with a very low power requirement and can keep time
even when the rest of the board is in a low-power or sleep mode. This helps in reducing overall power
consumption.

5.3.3 Setting time

Note: You must set the time before being able to read it. If you don’t do this first, you’ll see errors. You may
connect your BeagleY-AI to a network so it can get time from an NTP server.

You can set time manually by running the following command:

sudo hwclock --set --date ”2024-06-11 22:22:22”

5.3. Using the on-board Real Time Clock (RTC) 75

https://www.analog.com/media/en/technical-documentation/data-sheets/DS1340-DS1340C.pdf
https://www.adafruit.com/product/5817
https://www.digikey.com/en/products/detail/raspberry-pi/SC1163/21658274
https://www.amazon.com/KODASW-RTCBattery-Holder-Include-Battery/dp/B0CRKQ2MG1/

BeagleY-AI, Release 1.0.20240612-wip

5.3.4 Diving Deeper

There are actually two different “times” that your Linux system keeps track of.

• System time, which can be read using the date or timedatectl commands

• RTC (hardware) time which can be read using the hwclock command shown above.

Open up a BeagleY-AI console and try the commands shown below,

• Reading the current system time is achieved using the date command,

date

The date command should print Tue Jun 11 06:30:51 UTC 2024.

• Reading the current RTC (hardware) time is achieved using the hwclock command.

sudo hwclock

The hwclock command should print 2024-05-10 00:00:02.224187-05:00.

Comparing both date and hwclock output above we see the time format is different. we add some extra
instructions to match the format.

debian@BeagleBone:~$ date +%Y-%m-%d' '%H:%M:%S.%N%:z
2024-05-10 21:06:50.058595373+00:00

debian@BeagleBone:~$ sudo hwclock
2024-05-10 21:06:56.692874+00:00

But why?

We see here that our system and hardware clock are over 9 seconds apart!

Ok, in this particular case we set the HW clock slightly ahead to illustrate the point, but in real life “drift” is a real
problem that has to be dealt with. Environmental conditions like temperature or stray cosmic rays can cause
electronics to become ever so slightly out of sync, and these effects only grow over time unless corrected. It’s
why RTCs and other fancier time keeping instruments implement various methods to help account for this such
as temperature compensated oscillators.

Let’s fix our hardware clock. We assume here that the system clock is freshly synced over NTP so it’s going to
be our true time “source”.

sudo hwclock --systohc

Let’s create a simple script to get the two times, we’ll call it getTime.sh,

nano getTime.sh

copy paste the below code in that file,

HWTIME=$(sudo hwclock)
echo ”RTC - ${HWTIME} ”

SYSTIME=$(date +%Y-%m-%d' '%H:%M:%S.%N%:z)
echo ”SYS - ${SYSTIME} ”

Now let’s run it!

bash getTime.sh

The script gives us this output,

76 Chapter 5. Demos and tutorials

BeagleY-AI, Release 1.0.20240612-wip

Fig. 5.12: https://youtu.be/BAo5C2qbLq8

RTC - 2024-05-10 21:52:58.374954+00:00

SYS - 2024-05-10 21:52:59.048442940+00:00

As we can see, we’re still about a second off, but this is because it takes a bit of time to query the RTC via I2C.

If you want to learn more, the Going Further at the end of this article is a good starting point!

5.3.5 Troubleshooting

The most common error results from not having initialized the RTC at all. This usually happens if the system is
powered on without an RTC battery and without a network connection.

In such cases, you should be able to read the time after setting the time as follows:

• Sync clock

sudo hwclock --systohc

• Check RTC time

sudo hwclock

The above command should output 2024-05-10 21:06:56.692874+00:00.

5.3.6 Going Further

Consider learning about topics such as time keeping over GPS and Atomic Clocks!

There are some good YouTube videos below to provide sources for inspiration.

Network Time Protocol - Computerphile

Nanosecond Clock Sync - Jeff Geerling

5.3. Using the on-board Real Time Clock (RTC) 77

https://youtu.be/BAo5C2qbLq8

BeagleY-AI, Release 1.0.20240612-wip

Fig. 5.13: https://youtu.be/RvnG-ywF6_s

Using GPS with PPS to synchronize clocks over the network

Work in progress

Todo: Add further testing steps, results, and images.

5.4 Using PCA9685 Motor Drivers

There are several such “Motor and Servo Driver HATs” available on Amazon, Adafruit and other marketplaces.
While different manufacturers implement them slightly differently, the operating principle remains the same.

This guide aims to show you examples for two, namely the Xicoolee and Adafruit variants and how you can
modify the example Python userspace library for other variations.

5.4.1 Operating Principle

The NXP PCA9685 is a simple 16-channel, 12-bit PWM controller that communicates over I2C.

While originally designed as an LED driver, it’s ability to output PWM also makes it suitable as a Servo Motor
driver.

In addition, to add the ability to drive DC motors, some board designers add one or two Toshiba TB6612FNG
dual motor drivers as shown in the schematic below.

78 Chapter 5. Demos and tutorials

https://youtu.be/RvnG-ywF6_s
https://www.nxp.com/docs/en/data-sheet/PCA9685.pdf
https://www.sparkfun.com/datasheets/Robotics/TB6612FNG.pdf

BeagleY-AI, Release 1.0.20240612-wip

Fig. 5.14: https://youtu.be/7aTZ66ZL6Dk

If we look at the Xicoolee board and compare it to the schematic, we see that indeed Servo Channels 3-8 on
the PCB Silkscreen match pins 12 through 18 of the PWM Driver, while PWM1, PWM2, INA1/2 and INB1/2 are
used in conjunction with the TB6612FNG.

Looking at the TB6612FNG Datasheet, we can see that the IN pins for Channels A and B (INAx, INBx) are used

5.4. Using PCA9685 Motor Drivers 79

https://youtu.be/7aTZ66ZL6Dk
https://www.sparkfun.com/datasheets/Robotics/TB6612FNG.pdf

BeagleY-AI, Release 1.0.20240612-wip

to control the direction or “mode” of the DC motor, while the PWM signal controls the rotation speed for that
particular channel.

Thus, we can use the decoder table above to infer that to drive motor channel A at 50% speed clockwise, we
would set the PCA9685 to output INA1 High, INA2 Low and PWM1 at a 50% duty cycle.

If we wanted to go counter-clockwise, we would simply swap things around so INA1 was Low, INA2 was High
and assuming we want to keep the same rotation speed, PWM1 at a 50% duty cycle.

Lastly, we have the option for a “Short Brake” for the motors but please note that it is not recommended to
keep motors in this state as that shorts the coils internally and will cause them to heat up over time. If you
want to stop your motor, you should issue a “Short brake” state followed by a short delay to allow the motor to
physically stop rotating and then leave the motor in the “Stop” state (which de-energizes the coils) by setting
IN1 and IN2 to LOW.

But enough theory, let’s use some actual code to make things spin…

5.4.2 Using Adafruit ServoKit

If you are looking to drive Servo motors accurately and not particularly interested in driving DC motors, you
may consider using the Adafruit ServoKit library which simplifies this type of use case. As with all python
modules, make sure you do so inside a virtual environment as shown below!

mkdir project-name && cd project-name
python3 -m venv .venv
source .venv/bin/activate
sudo pip3 install --upgrade setuptools
sudo pip install --upgrade adafruit-python-shell
wget https://raw.githubusercontent.com/adafruit/Raspberry-Pi-Installer-
↪→Scripts/master/raspi-blinka.py
sudo python raspi-blinka.py
pip3 install adafruit-circuitpython-servokit adafruit-circuitpython-
↪→busdevice adafruit-circuitpython-register

From here, you should be able to run some example code such as the following:

import time
from adafruit_servokit import ServoKit

(continues on next page)

80 Chapter 5. Demos and tutorials

BeagleY-AI, Release 1.0.20240612-wip

(continued from previous page)

Set channels to the number of servo channels on your kit.
8 for FeatherWing, 16 for Shield/HAT/Bonnet.
kit = ServoKit(channels=16)

kit.servo[0].angle = 180
kit.continuous_servo[1].throttle = 1
time.sleep(1)
kit.continuous_servo[1].throttle = -1
time.sleep(1)
kit.servo[0].angle = 0
kit.continuous_servo[1].throttle = 0

To explore ServoKit further, check out the ServoKit Github Page and Examples

5.4.3 Python User-space Driver

As mentioned before, the PCA9685 is a rather simple I2C device, so the driver for it is equally simple:
PCA9685.py

Simply download this to the root of your project and you are most of the way there.

From there, you simply need an import statement and to define the driver instance:

from PCA9685 import PCA9685

pwm = PCA9685(0x60, debug=False) #Default I2C Address for the shield is 0x60
pwm.setPWMFreq(50) #Most Servo Motors use a PWM Frequency of 50Hz

You can now drive LEDs or servo motors by issuing the following command (replacing pin and dutyCycle with
your particular values):

pwm.setDutycycle(pin, dutyCycle)

5.4.4 WaveShare Motor and Servo Driver HAT

Waveshare writes some of the better documentation for these types of Motor Driver HATs

Todo: Add more information on Waveshare motor & servo driver HAT.

5.4. Using PCA9685 Motor Drivers 81

https://github.com/adafruit/Adafruit_CircuitPython_ServoKit/tree/main
https://gist.github.com/Grippy98/7ef6a75b2dc7a9470bd8c4dfc6b53f0a
https://www.waveshare.com/wiki/Motor_Driver_HAT

BeagleY-AI, Release 1.0.20240612-wip

5.4.5 XICOOLEE Motor and Servo Driver HAT

Photo Credit - Xicoolee

Looking at the schematic for the Xicoolee HAT, we see that we need to define our DC motor pins as follows:

#Xicoolee TB6612FNG

self.PWMA = 0
self.AIN1 = 2
self.AIN2 = 1
self.PWMB = 5
self.BIN1 = 3
self.BIN2 = 4

We can then run some simple example code as shown below:

#!/usr/bin/python

from PCA9685 import PCA9685
import time

Dir = [
'forward',
'backward',

]
pwm = PCA9685(0x40, debug=False)
pwm.setPWMFreq(50)

class MotorDriver():
def __init__(self):

Match these to your particular HAT!
self.PWMA = 0
self.AIN1 = 2
self.AIN2 = 1
self.PWMB = 5
self.BIN1 = 3
self.BIN2 = 4

def MotorRun(self, motor, index, speed):
if speed > 100:

return
(continues on next page)

82 Chapter 5. Demos and tutorials

BeagleY-AI, Release 1.0.20240612-wip

(continued from previous page)

if(motor == 0):
pwm.setDutycycle(self.PWMA, speed)
if(index == Dir[0]):

print (”1”)
pwm.setLevel(self.AIN1, 0)
pwm.setLevel(self.AIN2, 1)

else:
print (”2”)
pwm.setLevel(self.AIN1, 1)
pwm.setLevel(self.AIN2, 0)

else:
pwm.setDutycycle(self.PWMB, speed)
if(index == Dir[0]):

print (”3”)
pwm.setLevel(self.BIN1, 0)
pwm.setLevel(self.BIN2, 1)

else:
print (”4”)
pwm.setLevel(self.BIN1, 1)
pwm.setLevel(self.BIN2, 0)

def MotorStop(self, motor):
if (motor == 0):

pwm.setDutycycle(self.PWMA, 0)
else:

pwm.setDutycycle(self.PWMB, 0)

print(”this is a motor driver test code”)
Motor = MotorDriver()

print(”forward 2 s”)
Motor.MotorRun(0, 'forward', 100)
Motor.MotorRun(1, 'forward', 100)
time.sleep(2)

print(”backward 2 s”)
Motor.MotorRun(0, 'backward', 100)
Motor.MotorRun(1, 'backward', 100)
time.sleep(2)

print(”stop”)
Motor.MotorStop(0)
Motor.MotorStop(1)

5.4. Using PCA9685 Motor Drivers 83

BeagleY-AI, Release 1.0.20240612-wip

5.4.6 Adafruit DC & Stepper Motor HAT

Photo Credit - Adafruit

Looking at the schematic for the Adafruit HAT, we see that we need to define our DC motor pins as follows:

#Adafruit TB6612FNG #1

self.PWMA = 8
self.AIN1 = 10
self.AIN2 = 9
self.PWMB = 13
self.BIN1 = 11
self.BIN2 = 12

#Adafruit TB6612FNG #2

self.PWMA_2 = 2
self.AIN1_2 = 4
self.AIN2_2 = 3
self.PWMB_2 = 7
self.BIN1_2 = 5
self.BIN2_2 = 6

Todo: Expand on running 2 DC motor objects

84 Chapter 5. Demos and tutorials

BeagleY-AI, Release 1.0.20240612-wip

5.5 Booting from NVMe Drives

Work in progress

Todo: Add further testing steps, results, and images.

BeagleY-AI supports a PCI-Express x1 interface which enables data rates of up to 1GB/s for high speed expan-
sion.

Note: While the SoC supports PCI-e Gen 3, the flat-flex connector required by HATs is only rated for PCI-e Gen
2, so, as is the case with other similar boards in this form factor, actual transfer speeds may be limited to Gen
2, depending on a variety of layout and environmental factors

This enables it to take advantage of standard PC NVMe drives which offer exponentially higher random and
sequential read/write speeds as well as improved endurance over SD cards or traditional eMMC storage.

While the boot-ROM on the AM67 SoC does not support direct boot-to-NVMe, we can use a method where we
boot U-Boot from the SD Card and then use it to load the Linux filesystem from external NVMe storage.

5.5.1 Verified HATs and Drives

Most/All HATs and NVMe drives should work, but the following have been verified to work as part of writing this
guide:

HATs:

1. Geekworm X1001 PCIe to M.2 Key-M

2. Geekworm X1000 PCIe M.2 Key-M

NVMe drives:

1. Kingston OM3PDP3512B (512GB 2230)

2. Kingston NV2 (512GB 2280)

Drive Adapters (3D Printable):

The X1000 above uses the slightly uncommon 2242 drive size, so, an adapter may be required to mount a
2230 drive.

1. A simple adapter from @eliasjonsson on Printables works great - https://www.printables.com/
model/578236-m2-ssd-2230-to-2242

2. Similar adapters exist for 2230 to 2280 for example such as this one from @nzalog - https://www.
printables.com/model/217264-2230-to-2280-m2-adapter-ssd

5.5.2 Step by step

Note: This article was written using the BeagleY-AI Debian XFCE 12.5 2024-03-25 image.

Step 1. Boot from SD Normally

Grab the latest BeagleY-AI SD Image from (BeagleBoard.org/distros.)

Once logged in and at the terminal, make sure your system is up to date (a reboot is also recommended after
updating)

5.5. Booting from NVMe Drives 85

https://www.amazon.com/Geekworm-X1001-Key-M-Peripheral-Raspberry/dp/B0CPPGGDQT
https://www.amazon.com/gp/product/B0CQ4D2C9S
https://www.amazon.com/Kingston-512GB-3-0x4-Solid-OM3PDP3512B-A01/dp/B0BW7V8ZZ3
https://www.amazon.com/Kingston-500G-2280-Internal-SNV2S/dp/B0BBWJH1P8/
https://www.printables.com/model/578236-m2-ssd-2230-to-2242
https://www.printables.com/model/578236-m2-ssd-2230-to-2242
https://www.printables.com/model/217264-2230-to-2280-m2-adapter-ssd
https://www.printables.com/model/217264-2230-to-2280-m2-adapter-ssd
https://www.beagleboard.org/distros/beagley-ai-debian-xfce-12-5-2024-03-25/
https://www.beagleboard.org/distros

BeagleY-AI, Release 1.0.20240612-wip

sudo apt-get update && sudo apt-get full-upgrade -y
sudo reboot

Step 2. Verify that your NVMe drive is detected

The command lspci will list the attached PCI Express devices on the system:

debian@BeagleY:~$ lspci

You should see an output similar to the following, where the first entrance is the SoC internal PCI Express bridge
device and the second device listed is your NVMe drive, in this case, a Kingston OM3PDP3 drive.

00:00.0 PCI bridge: Texas Instruments Device b010
01:00.0 Non-Volatile memory controller: Kingston Technology Company, Inc.␣
↪→OM3PDP3 NVMe SSD (rev 01)

Now that we know the PCIe device is detected, let’s see if it’s recognized as a Storage Device:

The command lsblk will list the attached storage devices on the system:

debian@BeagleY:~$ lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINTS
mmcblk1 179:0 0 29.7G 0 disk
├─mmcblk1p1 179:1 0 256M 0 part /boot/firmware
├─mmcblk1p2 179:2 0 4G 0 part [SWAP]
└─mmcblk1p3 179:3 0 25.5G 0 part /
nvme0n1 259:0 0 476.9G 0 disk
└─nvme0n1p1 259:1 0 476.9G 0 part

Here we see that two devices are connected, mmcblk1 corresponds to our SD card, and nvme0n1 corre-
sponds to our NVMe drive, so everything is ready to go!

If your drives aren’t listed as expected, please check the Troubleshooting section at the end of this document.

Step 3. Copy your filesystem and modify extlinux.conf for NVMe boot

A variety of useful scripts are available in /opt/, one of them enables us to move our micro-sd contents to
NVMe and make BeagleY-AI boot from there directly.

The following 3 commands will change your U-boot prompt to boot from NVMe by default, but the serial boot
menu will still enable you to fall back to SD boot or other modes if something happens.

Note: This will copy the entire contents of your SD card to the NVMe drive, so expect it to take upwards of 15
minutes. This only needs to be run one time

sudo cp -v /opt/u-boot/bb-u-boot-beagley-ai/beagley-ai-microsd-to-nvme-w-
↪→swap /etc/default/beagle-flasher
sudo beagle-flasher-mv-rootfs-to-nvme
sudo reboot

Enjoy NVMe speeds!

Now that we’ve run the scripts above, you should see that lsblk now reports that our / or root filesystem is on
the nvme0n1p1 partition, meaning we are successfully booting from the NVMe drive.

It’s subtle, but the change can be seen by running lsblk again.

86 Chapter 5. Demos and tutorials

BeagleY-AI, Release 1.0.20240612-wip

debian@BeagleY:~$ lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINTS
mmcblk1 179:0 0 29.7G 0 disk
├─mmcblk1p1 179:1 0 256M 0 part /boot/firmware
├─mmcblk1p2 179:2 0 4G 0 part
└─mmcblk1p3 179:3 0 25.5G 0 part
nvme0n1 259:0 0 476.9G 0 disk
└─nvme0n1p1 259:1 0 476.9G 0 part /

Congratulations!

5.5.3 Troubleshooting

While most setups should work, it is possible that a combination of Software, Hardware or both can result in
minor issues. Here are some ideas for troubleshooting on your own:

Check that your cables are plugged in and oriented correctly

The flat-flex ribbon cable will only connect correctly one way, so ensure the orientation is correct with your
expansion HAT manual and that the ribbon cable is correctly seated.

A note on power-hungry drives

While most drives can be powered as-is with only the ribbon cable, some drives, especially high end full-
size 2280 drives may consume more power than normal for an M.2 connector. For such cases, some HAT
expansions will provide a means of providing external supplemental power. If your drive is not detected, it
may be worthwhile to try using a drive from a different manufacturer as a troubleshooting step.

As a side note, since 2230 drives are normally designed to run in Laptops, they tend to also consume less
power than their desktop counterparts and as such, are a “safer” option.

Check the Linux Kernel Logs for PCI:

You should see something similar to below without further errors:

debian@BeagleY:~$ dmesg | grep ”PCI”
[0.005276] PCI/MSI: /bus@f0000/interrupt-controller@1800000/msi-
↪→controller@1820000 domain created
[0.158546] PCI: CLS 0 bytes, default 64
[3.674209] j721e-pcie-host f102000.pcie: PCI host bridge to bus 0000:00
[3.742406] pci 0000:01:00.0: 7.876 Gb/s available PCIe bandwidth,␣
↪→limited by 8.0 GT/s PCIe x1 link at 0000:00:00.0 (capable of 31.504 Gb/s␣
↪→with 8.0 GT/s PCIe x4 link)
[4.915630] pci 0000:00:00.0: PCI bridge to [bus 01]

Still having issues?

Post questions on the forum under the tag “beagley-ai”.

5.6 Using IMX219 CSI Cameras

Work in progress

5.6. Using IMX219 CSI Cameras 87

https://forum.beagleboard.org/tags/c/general/8/beagley-ai

BeagleY-AI, Release 1.0.20240612-wip

Todo: Add further testing steps, results, and images.

To enable an IMX219 CSI camera, modify the following file: /boot/firmware/extlinux/extlinux.conf

We can check the available list of Device Tree Overlays as such:

debian@BeagleBone:~$ ls /boot/firmware/overlays/ | grep ”beagley”
k3-am67a-beagley-ai-csi0-imx219.dtbo
k3-am67a-beagley-ai-csi0-ov5640.dtbo
k3-am67a-beagley-ai-csi1-imx219.dtbo
k3-am67a-beagley-ai-dsi-rpi-7inch-panel.dtbo
k3-am67a-beagley-ai-lincolntech-185lcd-panel.dtbo

5.6.1 Using CSI Port 0

Then, add the following line to load the IMX219 CSI0 DTBO:

fdtoverlays /overlays/k3-am67a-beagley-ai-csi0-imx219.dtbo

Your /boot/firmware/extlinux/extlinux.conf file should look something like this:

label microSD (default)
kernel /Image
append console=ttyS2,115200n8 root=/dev/mmcblk0p2 ro rootfstype=ext4␣

↪→rootwait net.ifnames=0
fdtdir /
fdt /ti/k3-j722s-beagley-ai.dtb
fdtoverlays /overlays/k3-am67a-beagley-ai-csi0-imx219.dtbo
initrd /initrd.img

Now reboot…

debian@BeagleBone:~$ ls /dev/ | grep ”video”
video0
video1
video2

5.6.2 Using CSI Port 1

5.6.3 Troubleshooting

Found /extlinux/extlinux.conf
Retrieving file: /extlinux/extlinux.conf
beagley-ai microSD (extlinux.conf)

1: microSD Recovery
2: microSD (RPI 7inch panel)
3: microSD (lincolntech-185lcd panel)
4: microSD (csi0 imx219)
5: microSD (csi1 imx219)
6: microSD (csi0 ov5640)
7: microSD (default)

Enter choice: 4
4: microSD (csi0 imx219)

88 Chapter 5. Demos and tutorials

BeagleY-AI, Release 1.0.20240612-wip

5.7 Using the Arducam Dual V3Link Camera Kit

Work in progress

Todo: Add further testing steps, results, and images.

The Arducam Dual V3Link Camera Kit is an IMX219 based kit that leverages Texas Instruments’ FPDLink tech-
nology to enable using two CSI cameras over a single port up to 15 meters away using twisted pair cables.

Note: Unlike the larger quad-camera kit, the dual camera kit aims to simplify the software stack and improve
interoperability with the Raspberry Pi and other non-TI SBCs by forgoing the ability to support multi-stream CSI
inputs. This means that it is limited to “switching” between the two FPDLink inputs but has the benefit of not
requiring additional drivers beyond support for the base CSI camera driver (IMX219 in this case)

5.7. Using the Arducam Dual V3Link Camera Kit 89

https://www.arducam.com/product/arducam-imx219-v3link-camera-kit-for-raspberry-pi/

BeagleY-AI, Release 1.0.20240612-wip

5.7.1 Initial Hardware Connection

Simply plug in the HAT into the BeagleY GPIO header and connect the CSI header as shown below.

Either CSI header may be connected but make sure you use the corresponding CSI port DTS when enabling
your “camera”.

Todo: ADD CSI 0/1 Header Location photo.

5.7.2 Verify that the HAT is connected

The Arducam HAT should present itself as an I2C device on Bus 1.

To check that the I2C Bus looks like we expect:

sudo i2cdetect -r -y 1

To verify actual communication with the FPDlink device, we issue the following command:

sudo i2ctransfer -f -y 4 w3@0x0c 0xff 0x55 0x01 r1

5.7.3 Switching CSI Channels

The channel numbering for FPDLink goes from 1 to 2 (as opposed to counting from 0 as is the case for CSI)

Thus, to select video output from channel 1:

sudo i2ctransfer -f -y 4 w3@0x0c 0xff 0x55 0x01

To switch to channel 2:

sudo i2ctransfer -f -y 4 w3@0x0c 0xff 0x55 0x02

5.7.4 Troubleshooting

For additional documentation and support, see the Arducam Docs.

90 Chapter 5. Demos and tutorials

https://docs.arducam.com/V3Link-Camera-Solution/V3Link-Camera-Solution-for-Raspberry-Pi/Introduction/

Chapter 6

Support

All support for BeagleY-AI design is through BeagleBoard.org community at BeagleBoard.org forum.

6.1 Production board boot media

Todo: Add production boot media link in _static/epilog/production.image and reference it
here.

6.2 Certifications and export control

6.2.1 Export designations

• HS: 8471504090

• US HS: 8543708800

• UPC: 640265311062

• EU HS: 8471707000

• COO: CHINA

6.2.2 Size and weight

• Bare board dimensions: 85 x 56 x 20 mm

• Bare board weight: 50 g

• Full package dimensions: 140 x 100 x 40 mm

• Full package weight: 110g

6.3 Additional documentation

6.3.1 Hardware docs

For any hardware document like schematic diagram PDF, EDA files, issue tracker, and more you can checkout
the BeagleY-AI design repository.

91

https://forum.beagleboard.org/tag/beagley-ai
https://openbeagle.org/beagley-ai/beagley-ai

BeagleY-AI, Release 1.0.20240612-wip

6.3.2 Software docs

For BeagleY-AI specific software projects you can checkout all the BeagleY-AI project repositories group.

6.3.3 Support forum

For any additional support you can submit your queries on our forum, https://forum.beagleboard.org/tag/
beagley-ai

6.3.4 Pictures

6.4 Change History

Note: This section describes the change history of this document and board. Document changes are not
always a result of a board change. A board change will always result in a document change.

6.4.1 Board Changes

For all changes, see https://openbeagle.org/beagley-ai/beagley-ai. Versions released into production are noted
below.

Table 6.1: BeagleY-AI board change history

Rev Changes Date By

92 Chapter 6. Support

https://openbeagle.org/beagley-ai
https://forum.beagleboard.org/tag/beagley-ai
https://forum.beagleboard.org/tag/beagley-ai
https://openbeagle.org/beagley-ai/beagley-ai

	Introduction
	Detailed overview
	AM67A SoC

	Board components location
	Front components
	Back components

	BeagleY-AI Quick Start
	What’s included in the box?
	Getting started
	Power Supply
	Boot Media (Software image)
	USB Tethering
	SSH connection
	UART connection
	Headless connection
	Standalone connection

	Connecting to WiFi
	nmtui
	iwctl

	Attach fan
	Demos and Tutorials

	Design and Specifications
	Block Diagram and Overview
	Processor
	Boot Modes
	Power
	Clocks and Resets
	USB-C Power/Data Port
	PMIC
	HCPS (High Current Power Stage)
	Analog Rail Decoupling
	Digital Rail Decoupling
	LDOs

	Memory
	RAM (LPDDR4)
	EEPROM
	microSD Card

	General Expansion
	40pin Header
	I2C
	USB
	PCI Express
	RTC (Real-time Clock)
	Fan Header

	Networking
	WiFi / Bluetooth LE
	Ethernet

	Cameras & Displays
	HDMI (DPI)
	OLDI (LVDS)
	DSI
	CSI

	Buttons and LEDs
	Debug Ports
	JTAG Tag-Connect
	UART
	PMIC NVM Tag-Connect

	Miscellaneous
	Mechanical Specifications

	Expansion
	PCIe

	Demos and tutorials
	Using GPIO
	Pin Numbering
	Required Hardware
	GPIO Write
	Blink an LED
	Understanding the code

	Read a Button
	Combining the Two
	Understanding Internal Pull Resistors
	Troubleshooting
	Bonus - Turn all GPIOs ON/OFF
	Going Further

	Pulse Width Modulation (PWM)
	What is it
	How do we do it
	Troubleshooting
	Going Further

	Using the on-board Real Time Clock (RTC)
	Required Hardware
	Uses for an RTC
	Setting time
	Diving Deeper
	Troubleshooting
	Going Further
	Network Time Protocol - Computerphile
	Nanosecond Clock Sync - Jeff Geerling
	Using GPS with PPS to synchronize clocks over the network

	Using PCA9685 Motor Drivers
	Operating Principle
	Using Adafruit ServoKit
	Python User-space Driver
	WaveShare Motor and Servo Driver HAT
	XICOOLEE Motor and Servo Driver HAT
	Adafruit DC & Stepper Motor HAT

	Booting from NVMe Drives
	Verified HATs and Drives
	Step by step
	Step 1. Boot from SD Normally
	Step 2. Verify that your NVMe drive is detected
	Step 3. Copy your filesystem and modify extlinux.conf for NVMe boot
	Enjoy NVMe speeds!

	Troubleshooting
	Check that your cables are plugged in and oriented correctly
	A note on power-hungry drives
	Check the Linux Kernel Logs for PCI:
	Still having issues?

	Using IMX219 CSI Cameras
	Using CSI Port 0
	Using CSI Port 1
	Troubleshooting

	Using the Arducam Dual V3Link Camera Kit
	Initial Hardware Connection
	Verify that the HAT is connected
	Switching CSI Channels
	Troubleshooting

	Support
	Production board boot media
	Certifications and export control
	Export designations
	Size and weight

	Additional documentation
	Hardware docs
	Software docs
	Support forum
	Pictures

	Change History
	Board Changes

